Tests of general relativity at the fourth post-Newtonian order

Authors: Poulami Dutta Roy, Sayantani Datta, K. G. Arun

11 pages, 2 figures, 2 tables
License: CC BY 4.0

Abstract: The recently computed post-Newtonian (PN) gravitational-wave phasing up to 4.5PN order accounts for several novel physical effects in compact binary dynamics such as the {\it tail of the memory, tails of tails of tails and tails of mass hexadecupole and current octupole moments}. Therefore, it is instructive to assess the ability of current-generation (2G) detectors such as LIGO/Virgo, next-generation (XG) ground-based gravitational wave detectors such as Cosmic Explorer/Einstein Telescope and space-based detectors like LISA to test the predictions of PN theory at these orders. Employing Fisher information matrix, we find that the projected bounds on the deviations from the logarithmic PN phasing coefficient at 4PN is ${\cal O}(10^{-2})$ and ${\cal O}(10^{-1})$ for XG and 2G detectors, respectively. Similarly, the projected bounds on other three PN coefficients that appear at 4PN and 4.5PN are ${\cal O}(10^{-1}-10^{-2})$ for XG and ${\cal O}(1)$ for 2G detectors. LISA observations of supermassive BHs could provide the tightest constraints on these four parameters ranging from ${\cal O}(10^{-4}-10^{-2})$. The variation in these bounds are studied as a function of total mass and the mass ratio of the binaries in quasi-circular orbits. These new tests are unique probes of higher order nonlinear interactions in compact binary dynamics and their consistency with the predictions of general relativity.

Submitted to arXiv on 11 Jun. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.