Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL

Authors: Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, Xiao Huang

Abstract: Generating accurate SQL according to natural language questions (text-to-SQL) is a long-standing problem since it is challenging in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems include human engineering and deep neural networks. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex and corresponding user questions more challenging, PLMs with limited comprehension capabilities can lead to incorrect SQL generation. This necessitates more sophisticated and tailored optimization methods, which, in turn, restricts the applications of PLM-based systems. Most recently, large language models (LLMs) have demonstrated significant abilities in natural language understanding as the model scale remains increasing. Therefore, integrating the LLM-based implementation can bring unique opportunities, challenges, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the current challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future directions.

Submitted to arXiv on 12 Jun. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.