WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs

Authors: Weijian Xie, Xuefeng Liang, Yuhui Liu, Kaihua Ni, Hong Cheng, Zetian Hu

8 pages, 2 figures, technical report for 3rd place in Task 3 of Meta KDD Cup 2024 CRAG Challenge

Abstract: Large Language Models (LLMs) have greatly contributed to the development of adaptive intelligent agents and are positioned as an important way to achieve Artificial General Intelligence (AGI). However, LLMs are prone to produce factually incorrect information and often produce "phantom" content that undermines their reliability, which poses a serious challenge for their deployment in real-world scenarios. Enhancing LLMs by combining external databases and information retrieval mechanisms is an effective path. To address the above challenges, we propose a new approach called WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system. First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval. WeKnow-RAG then utilizes domain-specific knowledge graphs to satisfy a variety of queries and domains, thereby improving performance on factual information and complex reasoning tasks by employing multi-stage web page retrieval techniques using both sparse and dense retrieval methods. Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process. Finally, we also integrate a self-assessment mechanism for the LLM to evaluate the trustworthiness of the answers it generates. Our approach proves its outstanding effectiveness in a wide range of offline experiments and online submissions.

Submitted to arXiv on 14 Aug. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.