Developing a Llama-Based Chatbot for CI/CD Question Answering: A Case Study at Ericsson
Authors: Daksh Chaudhary, Sri Lakshmi Vadlamani, Dimple Thomas, Shiva Nejati, Mehrdad Sabetzadeh
Abstract: This paper presents our experience developing a Llama-based chatbot for question answering about continuous integration and continuous delivery (CI/CD) at Ericsson, a multinational telecommunications company. Our chatbot is designed to handle the specificities of CI/CD documents at Ericsson, employing a retrieval-augmented generation (RAG) model to enhance accuracy and relevance. Our empirical evaluation of the chatbot on industrial CI/CD-related questions indicates that an ensemble retriever, combining BM25 and embedding retrievers, yields the best performance. When evaluated against a ground truth of 72 CI/CD questions and answers at Ericsson, our most accurate chatbot configuration provides fully correct answers for 61.11% of the questions, partially correct answers for 26.39%, and incorrect answers for 12.50%. Through an error analysis of the partially correct and incorrect answers, we discuss the underlying causes of inaccuracies and provide insights for further refinement. We also reflect on lessons learned and suggest future directions for further improving our chatbot's accuracy.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.