Watermarking Techniques for Large Language Models: A Survey

Authors: Yuqing Liang, Jiancheng Xiao, Wensheng Gan, Philip S. Yu

Preprint. 19 figures, 7 tables

Abstract: With the rapid advancement and extensive application of artificial intelligence technology, large language models (LLMs) are extensively used to enhance production, creativity, learning, and work efficiency across various domains. However, the abuse of LLMs also poses potential harm to human society, such as intellectual property rights issues, academic misconduct, false content, and hallucinations. Relevant research has proposed the use of LLM watermarking to achieve IP protection for LLMs and traceability of multimedia data output by LLMs. To our knowledge, this is the first thorough review that investigates and analyzes LLM watermarking technology in detail. This review begins by recounting the history of traditional watermarking technology, then analyzes the current state of LLM watermarking research, and thoroughly examines the inheritance and relevance of these techniques. By analyzing their inheritance and relevance, this review can provide research with ideas for applying traditional digital watermarking techniques to LLM watermarking, to promote the cross-integration and innovation of watermarking technology. In addition, this review examines the pros and cons of LLM watermarking. Considering the current multimodal development trend of LLMs, it provides a detailed analysis of emerging multimodal LLM watermarking, such as visual and audio data, to offer more reference ideas for relevant research. This review delves into the challenges and future prospects of current watermarking technologies, offering valuable insights for future LLM watermarking research and applications.

Submitted to arXiv on 26 Aug. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.