Robust estimation of the intrinsic dimension of data sets with quantum cognition machine learning

Authors: Luca Candelori, Alexander G. Abanov, Jeffrey Berger, Cameron J. Hogan, Vahagn Kirakosyan, Kharen Musaelian, Ryan Samson, James E. T. Smith, Dario Villani, Martin T. Wells, Mengjia Xu

License: CC BY-NC-SA 4.0

Abstract: We propose a new data representation method based on Quantum Cognition Machine Learning and apply it to manifold learning, specifically to the estimation of intrinsic dimension of data sets. The idea is to learn a representation of each data point as a quantum state, encoding both local properties of the point as well as its relation with the entire data. Inspired by ideas from quantum geometry, we then construct from the quantum states a point cloud equipped with a quantum metric. The metric exhibits a spectral gap whose location corresponds to the intrinsic dimension of the data. The proposed estimator is based on the detection of this spectral gap. When tested on synthetic manifold benchmarks, our estimates are shown to be robust with respect to the introduction of point-wise Gaussian noise. This is in contrast to current state-of-the-art estimators, which tend to attribute artificial ``shadow dimensions'' to noise artifacts, leading to overestimates. This is a significant advantage when dealing with real data sets, which are inevitably affected by unknown levels of noise. We show the applicability and robustness of our method on real data, by testing it on the ISOMAP face database, MNIST, and the Wisconsin Breast Cancer Dataset.

Submitted to arXiv on 19 Sep. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.