From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems

Authors: Ali Mohammadjafari, Anthony S. Maida, Raju Gottumukkala

12 pages, 5 figures, 3 tables

Abstract: Since the onset of LLMs, translating natural language queries to structured SQL commands is assuming increasing. Unlike the previous reviews, this survey provides a comprehensive study of the evolution of LLM-based text-to-SQL systems, from early rule-based models to advanced LLM approaches, and how LLMs impacted this field. We discuss benchmarks, evaluation methods and evaluation metrics. Also, we uniquely study the role of integration of knowledge graphs for better contextual accuracy and schema linking in these systems. The current techniques fall into two categories: in-context learning of corpus and fine-tuning, which then leads to approaches such as zero-shot, few-shot learning from the end, and data augmentation. Finally, we highlight key challenges such as computational efficiency, model robustness, and data privacy with perspectives toward their development and improvements in potential areas for future of LLM-based text-to-SQL system.

Submitted to arXiv on 01 Oct. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.