High-dimensional Grouped-regression using Bayesian Sparse Projection-posterior

Authors: Samhita Pal, Subhashis Ghoshal

License: CC BY-NC-ND 4.0

Abstract: We consider a novel Bayesian approach to estimation, uncertainty quantification, and variable selection for a high-dimensional linear regression model under sparsity. The number of predictors can be nearly exponentially large relative to the sample size. We put a conjugate normal prior initially disregarding sparsity, but for making an inference, instead of the original multivariate normal posterior, we use the posterior distribution induced by a map transforming the vector of regression coefficients to a sparse vector obtained by minimizing the sum of squares of deviations plus a suitably scaled $\ell_1$-penalty on the vector. We show that the resulting sparse projection-posterior distribution contracts around the true value of the parameter at the optimal rate adapted to the sparsity of the vector. We show that the true sparsity structure gets a large sparse projection-posterior probability. We further show that an appropriately recentred credible ball has the correct asymptotic frequentist coverage. Finally, we describe how the computational burden can be distributed to many machines, each dealing with only a small fraction of the whole dataset. We conduct a comprehensive simulation study under a variety of settings and found that the proposed method performs well for finite sample sizes. We also apply the method to several real datasets, including the ADNI data, and compare its performance with the state-of-the-art methods. We implemented the method in the \texttt{R} package called \texttt{sparseProj}, and all computations have been carried out using this package.

Submitted to arXiv on 21 Oct. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.