TS3-Codec: Transformer-Based Simple Streaming Single Codec

Authors: Haibin Wu, Naoyuki Kanda, Sefik Emre Eskimez, Jinyu Li

Abstract: Neural audio codecs (NACs) have garnered significant attention as key technologies for audio compression as well as audio representation for speech language models. While mainstream NAC models are predominantly convolution-based, the performance of NACs with a purely transformer-based, and convolution-free architecture remains unexplored. This paper introduces TS3-Codec, a Transformer-Based Simple Streaming Single Codec. TS3-Codec consists of only a stack of transformer layers with a few linear layers, offering greater simplicity and expressiveness by fully eliminating convolution layers that require careful hyperparameter tuning and large computations. Under the streaming setup, the proposed TS3-Codec achieves comparable or superior performance compared to the codec with state-of-the-art convolution-based architecture while requiring only 12% of the computation and 77% of bitrate. Furthermore, it significantly outperforms the convolution-based codec when using similar computational resources.

Submitted to arXiv on 27 Nov. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.