Percent-level timing of reionization: self-consistent, implicit-likelihood inference from XQR-30+ Ly$α$ forest data
Authors: Yuxiang Qin, Andrei Mesinger, David Prelogović, George Becker, Manuela Bischetti, Sarah E. I. Bosman, Frederick B. Davies, Valentina D'Odorico, Prakash Gaikwad, Martin G. Haehnelt, Laura Keating, Samuel Lai, Emma Ryan-Weber, Sindhu Satyavolu, Fabian Walter, Yongda Zhu
Abstract: The Lyman alpha (Lya) forest in the spectra of z>5 quasars provides a powerful probe of the late stages of the Epoch of Reionization (EoR). With the recent advent of exquisite datasets such as XQR-30, many models have struggled to reproduce the observed large-scale fluctuations in the Lya opacity. Here we introduce a Bayesian analysis framework that forward-models large-scale lightcones of IGM properties, and accounts for unresolved sub-structure in the Lya opacity by calibrating to higher-resolution hydrodynamic simulations. Our models directly connect physically-intuitive galaxy properties with the corresponding IGM evolution, without having to tune "effective" parameters or calibrate out the mean transmission. The forest data, in combination with UV luminosity functions and the CMB optical depth, are able to constrain global IGM properties at percent level precision in our fiducial model. Unlike many other works, we recover the forest observations without evoking a rapid drop in the ionizing emissivity from z~7 to 5.5, which we attribute to our sub-grid model for recombinations. In this fiducial model, reionization ends at $z=5.44\pm0.02$ and the EoR mid-point is at $z=7.7\pm0.1$. The ionizing escape fraction increases towards faint galaxies, showing a mild redshift evolution at fixed UV magnitude, Muv. Half of the ionizing photons are provided by galaxies fainter than Muv~-12, well below direct detection limits of optical/NIR instruments including JWST. We also show results from an alternative galaxy model that does not allow for a redshift evolution in the ionizing escape fraction. Despite being decisively disfavored by the Bayesian evidence, the posterior of this model is in qualitative agreement with that from our fiducial model. We caution however that our conclusions regarding the early stages of the EoR and which sources reionized the Universe are more model-dependent.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.