Kernel Methods for Interferometric Imaging

Authors: Dimitrios Psaltis, Feryal Ozel, Yassine Ben Zineb

arXiv: 2412.01908v1 - DOI (astro-ph.IM)
Submitted to the Astrophysical Journal
License: CC BY-NC-SA 4.0

Abstract: Increasing the angular resolution of an interferometric array requires placing its elements at large separations. This often leads to sparse coverage and introduces challenges to reconstructing images from interferometric data. We introduce a new interferometric imaging algorithm, KRISP, that is based on kernel methods, is statistically robust, and is agnostic to the underlying image. The algorithm reconstructs the complete Fourier map up to the maximum observed baseline length based entirely on the data without tuning by a user or training on prior images and reproduces images with high fidelity. KRISP works efficiently for many sparse array configurations even in the presence of significant image structure as long as the typical baseline separation is comparable to or less than the correlation length of the Fourier map, which is inversely proportional to the size of the target image.

Submitted to arXiv on 02 Dec. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.