Decentralized Governance of Autonomous AI Agents

Authors: Tomer Jordi Chaffer, Charles von Goins II, Bayo Okusanya, Dontrail Cotlage, Justin Goldston

License: CC BY 4.0

Abstract: Autonomous AI agents present transformative opportunities and significant governance challenges. Existing frameworks, such as the EU AI Act and the NIST AI Risk Management Framework, fall short of addressing the complexities of these agents, which are capable of independent decision-making, learning, and adaptation. To bridge these gaps, we propose the ETHOS (Ethical Technology and Holistic Oversight System) framework, a decentralized governance (DeGov) model leveraging Web3 technologies, including blockchain, smart contracts, and decentralized autonomous organizations (DAOs). ETHOS establishes a global registry for AI agents, enabling dynamic risk classification, proportional oversight, and automated compliance monitoring through tools like soulbound tokens and zero-knowledge proofs. Furthermore, the framework incorporates decentralized justice systems for transparent dispute resolution and introduces AI specific legal entities to manage limited liability, supported by mandatory insurance to ensure financial accountability and incentivize ethical design. By integrating philosophical principles of rationality, ethical grounding, and goal alignment, ETHOS aims to create a robust research agenda for promoting trust, transparency, and participatory governance. This innovative framework offers a scalable and inclusive strategy for regulating AI agents, balancing innovation with ethical responsibility to meet the demands of an AI-driven future.

Submitted to arXiv on 22 Dec. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.