RAG-Reward: Optimizing RAG with Reward Modeling and RLHF

Authors: Hanning Zhang, Juntong Song, Juno Zhu, Yuanhao Wu, Tong Zhang, Cheng Niu

Preprint, work in progress
License: CC BY 4.0

Abstract: Retrieval-augmented generation (RAG) enhances Large Language Models (LLMs) with relevant and up-to-date knowledge, improving their ability to answer knowledge-intensive questions. It has been shown to enhance both generation quality and trustworthiness. While numerous works have focused on improving retrieval, generation, and evaluation, the role of reward models in reinforcement learning for optimizing RAG and establishing automated benchmarking pipelines remains underexplored. In this paper, we introduce \textbf{RAG-Reward}, a dataset designed to enable \textit{hallucination-free, comprehensive, reliable, and efficient RAG}. We define four key metrics for assessing generation quality and develop an automated annotation pipeline that leverages multiple LLMs to generate outputs across diverse RAG scenarios. GPT-4o is used to evaluate and construct preference data. Using \textbf{RAG-Reward}, we train reward models and apply reinforcement learning with human feedback (RLHF) to improve LLMs' effectiveness in RAG. Experimental results show that our reward model achieves state-of-the-art performance on a held-out test set, demonstrating both the effectiveness of our approach and the quality of our dataset. Furthermore, the improved generation quality of the trained policy model highlights the feasibility of using RLHF to enhance RAG pipelines.

Submitted to arXiv on 22 Jan. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.