StreamingRAG: Real-time Contextual Retrieval and Generation Framework
Authors: Murugan Sankaradas, Ravi K. Rajendran, Srimat T. Chakradhar
Abstract: Extracting real-time insights from multi-modal data streams from various domains such as healthcare, intelligent transportation, and satellite remote sensing remains a challenge. High computational demands and limited knowledge scope restrict the applicability of Multi-Modal Large Language Models (MM-LLMs) on these data streams. Traditional Retrieval-Augmented Generation (RAG) systems address knowledge limitations of these models, but suffer from slow preprocessing, making them unsuitable for real-time analysis. We propose StreamingRAG, a novel RAG framework designed for streaming data. StreamingRAG constructs evolving knowledge graphs capturing scene-object-entity relationships in real-time. The knowledge graph achieves temporal-aware scene representations using MM-LLMs and enables timely responses for specific events or user queries. StreamingRAG addresses limitations in existing methods, achieving significant improvements in real-time analysis (5-6x faster throughput), contextual accuracy (through a temporal knowledge graph), and reduced resource consumption (using lightweight models by 2-3x).
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.