Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning

Authors: Chao-Chung Wu, Zhi Rui Tam, Chieh-Yen Lin, Yun-Nung Chen, Shao-Hua Sun, Hung-yi Lee

Accepted to NeurIPS 2025
License: CC BY-SA 4.0

Abstract: Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. This paper presents a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces non-target task degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhancement of non-target task robustness stems from the reduction of high perplexity tokens found in LLM-generated sequences. Following our findings, we showed that masking high perplexity tokens in ground truth training data achieves similar non-target task performance preservation, comparable to using LLM-generated data. Extensive experiments across different model families and scales, including Gemma 2 IT 2B, Llama 3 8B Instruct, and three additional models, agree with our findings. To the best of our knowledge, this is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning, offering valuable insights for developing more robust fine-tuning strategies.

Submitted to arXiv on 24 Jan. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.