Bridging Entanglement and Magic Resources through Operator Space
Authors: Neil Dowling, Kavan Modi, Gregory A. L. White
Abstract: Local operator entanglement (LOE) dictates the complexity of simulating Heisenberg evolution using tensor network methods, and serves as strong dynamical signature of quantum chaos. We show that LOE is also sensitive to how non-Clifford a unitary is: its magic resources. In particular, we prove that LOE is always upper-bound by three distinct magic monotones: $T$-count, unitary nullity, and operator stabilizer Rényi entropy. Moreover, in the average case for large, random circuits, LOE and magic monotones approximately coincide. Our results imply that an operator evolution that is expensive to simulate using tensor network methods must also be inefficient using both stabilizer and Pauli truncation methods. A direct corollary of our bounds is that any quantum chaotic dynamics cannot be simulated classically. Entanglement in operator space therefore measures a unified picture of non-classical resources, in stark contrast to the Schrödinger picture.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.