Safe Quadrotor Navigation using Composite Control Barrier Functions

Authors: Marvin Harms, Martin Jacquet, Kostas Alexis

Accepted for Presentation at International Conference on Robotics and Automation (ICRA) 2025

Abstract: This paper introduces a safety filter to ensure collision avoidance for multirotor aerial robots. The proposed formalism leverages a single Composite Control Barrier Function from all position constraints acting on a third-order nonlinear representation of the robot's dynamics. We analyze the recursive feasibility of the safety filter under the composite constraint and demonstrate that the infeasible set is negligible. The proposed method allows computational scalability against thousands of constraints and, thus, complex scenes with numerous obstacles. We experimentally demonstrate its ability to guarantee the safety of a quadrotor with an onboard LiDAR, operating in both indoor and outdoor cluttered environments against both naive and adversarial nominal policies.

Submitted to arXiv on 06 Feb. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.