A Comprehensive Survey on Long Context Language Modeling

Authors: Jiaheng Liu, Dawei Zhu, Zhiqi Bai, Yancheng He, Huanxuan Liao, Haoran Que, Zekun Wang, Chenchen Zhang, Ge Zhang, Jiebin Zhang, Yuanxing Zhang, Zhuo Chen, Hangyu Guo, Shilong Li, Ziqiang Liu, Yong Shan, Yifan Song, Jiayi Tian, Wenhao Wu, Zhejian Zhou, Ruijie Zhu, Junlan Feng, Yang Gao, Shizhu He, Zhoujun Li, Tianyu Liu, Fanyu Meng, Wenbo Su, Yingshui Tan, Zili Wang, Jian Yang, Wei Ye, Bo Zheng, Wangchunshu Zhou, Wenhao Huang, Sujian Li, Zhaoxiang Zhang

License: CC BY 4.0

Abstract: Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: \href{https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling}{\color[RGB]{175,36,67}{LCLM-Horizon}}.

Submitted to arXiv on 20 Mar. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.