TESSERA: Temporal Embeddings of Surface Spectra for Earth Representation and Analysis

Authors: Zhengpeng Feng, Sadiq Jaffer, Jovana Knezevic, Silja Sormunen, Robin Young, Madeline Lisaius, Markus Immitzer, James Ball, Clement Atzberger, David A. Coomes, Anil Madhavapeddy, Andrew Blake, Srinivasan Keshav

License: CC BY 4.0

Abstract: Satellite remote sensing (RS) enables a wide array of downstream Earth observation (EO) applications, including climate modeling, carbon accounting, and strategies for conservation and sustainable land use. We present TESSERA, a novel Remote Sensing Foundation Model (RSFM) that uses Self-Supervised Learning (SSL) to generate global, robust representations at 10m scale from pixel-level satellite time series data. TESSERA combines information from only optical and SAR data streams using two parallel Transformer-based encoders: one dedicated to Sentinel-1 SAR polarizations and another to Sentinel-2 MSI data (10 selected spectral bands) to create representations that are then fused using a multilayer perceptron (MLP), resulting in a global representation map covering the years 2017 to 2024. Our precomputed representations set a new state-of-the-art performance benchmark and our open-source approach democratizes access to high-performance, high-resolution representations. We benchmark the performance of TESSERA in five diverse tasks, comparing our work with state-of-the-art task-specific models and other foundation models. Our results show that TESSERA outperforms both traditional RS baselines and the leading geospatial foundation models in these diverse downstream tasks.

Submitted to arXiv on 25 Jun. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.