CORE-KG: An LLM-Driven Knowledge Graph Construction Framework for Human Smuggling Networks

Authors: Dipak Meher, Carlotta Domeniconi, Guadalupe Correa-Cabrera

License: CC BY 4.0

Abstract: Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer valuable insights but are unstructured, lexically dense, and filled with ambiguous or shifting references-posing challenges for automated knowledge graph (KG) construction. Existing KG methods often rely on static templates and lack coreference resolution, while recent LLM-based approaches frequently produce noisy, fragmented graphs due to hallucinations, and duplicate nodes caused by a lack of guided extraction. We propose CORE-KG, a modular framework for building interpretable KGs from legal texts. It uses a two-step pipeline: (1) type-aware coreference resolution via sequential, structured LLM prompts, and (2) entity and relationship extraction using domain-guided instructions, built on an adapted GraphRAG framework. CORE-KG reduces node duplication by 33.28%, and legal noise by 38.37% compared to a GraphRAG-based baseline-resulting in cleaner and more coherent graph structures. These improvements make CORE-KG a strong foundation for analyzing complex criminal networks.

Submitted to arXiv on 20 Jun. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.