Learning the action for long-time-step simulations of molecular dynamics

Authors: Filippo Bigi, Michele Ceriotti

arXiv: 2508.01068v1 - DOI (physics.chem-ph)
12 pages, 5 figures

Abstract: The equations of classical mechanics can be used to model the time evolution of countless physical systems, from the astrophysical to the atomic scale. Accurate numerical integration requires small time steps, which limits the computational efficiency -- especially in cases such as molecular dynamics that span wildly different time scales. Using machine-learning (ML) algorithms to predict trajectories allows one to greatly extend the integration time step, at the cost of introducing artifacts such as lack of energy conservation and loss of equipartition between different degrees of freedom of a system. We propose learning data-driven structure-preserving (symplectic and time-reversible) maps to generate long-time-step classical dynamics, showing that this method is equivalent to learning the mechanical action of the system of interest. We show that an action-derived ML integrator eliminates the pathological behavior of non-structure-preserving ML predictors, and that the method can be applied iteratively, serving as a correction to computationally cheaper direct predictors.

Submitted to arXiv on 01 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.