Local compactness does not always imply spatiality

Authors: G. Bezhanishvili, S. D. Melzer, R. Raviprakash, A. L. Suarez

18 pages

Abstract: It is a well-known result in pointfree topology that every locally compact frame is spatial. Whether this result extends to MT-algebras (McKinsey-Tarski algebras) was an open problem. We resolve it in the negative by constructing a locally compact sober MT-algebra which is not spatial. We also revisit N\"obeling's largely overlooked approach to pointfree topology from the 1950s. We show that his separation axioms are closely related to those in the theory of MT-algebras with the notable exception of Hausdorffness. We prove that N\"obeling's Spatiality Theorem implies the well-known Isbell Spatiality Theorem. We then generalize N\"obeling's Spatiality Theorem by proving that each locally compact $T_{1/2}$-algebra is spatial. The proof utilizes the fact that every nontrivial $T_{1/2}$-algebra contains a closed atom, which we show is equivalent to the axiom of choice.

Submitted to arXiv on 03 Aug. 2025

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.