Fast Times, Slow Times: Timescale Separation in Financial Timeseries Data
Authors: Jan Rosenzweig
Abstract: Financial time series exhibit multiscale behavior, with interaction between multiple processes operating on different timescales. This paper introduces a method for separating these processes using variance and tail stationarity criteria, framed as generalized eigenvalue problems. The approach allows for the identification of slow and fast components in asset returns and prices, with applications to parameter drift, mean reversion, and tail risk management. Empirical examples using currencies, equity ETFs and treasury yields illustrate the practical utility of the method.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.