Formation of Semi-relativisitc Jets from Magnetospheres of Accreting Neutron Stars: Injection of Hot Bubbles into a Magnetic Tower

Authors: Yoshiaki Kato, Mitsuru Hayashi, Ryoji Matsumoto

Astrophys.J.600:338-342,2004
6 pages, 3 figures, to appear in ApJ, uses emulateapj.cls and apjfonts.sty. A paper with high-resolution figures and movies available at http://www2.yukawa.kyoto-u.ac.jp/~ykato/research/

Abstract: We present the results of 2.5-dimensional resistive magnetohydrodynamic (MHD) simulations of the magnetic interaction between a weakly magnetized neutron star and its accretion disk. General relativistic effects are simulated by using the pseudo-Newtonian potential. We find that well-collimated jets traveling along the rotation axis of the disk are formed by the following mechanism: (1) The magnetic loops connecting the neutron star and the disk are twisted due to the differential rotation between the neutron star and the disk. (2) Twist injection from the disk initiates expansion of the loop. (3) The expanding magnetic loops create a magnetic tower in which accelerated disk material travel as collimated bipolar jets. The propagation speed of the working surface of the jet is the order of 10% of the speed of light ($\sim 0.1c$). (4) Magnetic reconnection taking place inside the expanding magnetic loops injects hot bubbles intermittently into the magnetic tower. The ejection speed of the bubble is the order of the local Alfv\'{e}n speed of the launching point and $\sim 0.2c$ in our simulations. (5) The hot bubbles moving inside the tower catch up with the working surface of the jet. High energy electrons created by the magnetic reconnection are a plausible source of radio emission. Our model can explain the formation process of a narrow jet from a weakly magnetized ($|{\boldmath$B_{*}$}|\le 10^{9}$ gauss) neutron star and the correlation between radio flares of the core and of the lobe observed in Sco X-1.

Submitted to arXiv on 25 Aug. 2003

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.