Drift-Controlled Anomalous Diffusion: A Solvable Gaussian Model

Authors: Fabrizio Lillo, Rosario N. Mantegna

arXiv: cond-mat/0001211v1 - DOI (cond-mat.stat-mech)
4 pages, 1 figure

Abstract: We introduce a Langevin equation characterized by a time dependent drift. By assuming a temporal power-law dependence of the drift we show that a great variety of behavior is observed in the dynamics of the variance of the process. In particular diffusive, subdiffusive, superdiffusive and stretched exponentially diffusive processes are described by this model for specific values of the two control parameters. The model is also investigated in the presence of an external harmonic potential. We prove that the relaxation to the stationary solution is power-law in time with an exponent controlled by one of model parameters.

Submitted to arXiv on 14 Jan. 2000

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.