X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz

Authors: Mathieu Taillefumier, Delphine Cabaret, Anne-Marie Flank, Francesco Mauri

11 pages, 4 figures

Abstract: We present a reciprocal-space pseudopotential scheme for calculating X-ray absorption near-edge structure (XANES) spectra. The scheme incorporates a recursive method to compute absorption cross section as a continued fraction. The continued fraction formulation of absorption is advantageous in that it permits the treatment of core-hole interaction through large supercells (hundreds of atoms). The method is compared with recently developed Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES spectra were measured. Core-hole effects are investigated by varying the size of the supercell, thus leading to information similar to that obtained from cluster size analysis usually performed within multiple scattering calculations.

Submitted to arXiv on 31 Jul. 2002

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.