Cell Cycling Models of Carcinogenesis: A Complex Systems Analysis
Authors: V. I. Prisecaru, I. C. Baianu
Abstract: A new approach to the modular, complex systems analysis of nonlinear dynamics in cell cycling network transformations involved in carcinogenesis is proposed. Carcinogenesis is a complex process that involves dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments that form numerous inter-related pathways. One such family of pathways contains the cell cyclins. Cyclins are proteins that link several critical pro-apoptotic and other cell cycling/division components, including the tumor suppressor gene TP53 and its product, the Thomsen-Friedenreich antigen (T antigen), Rb, mdm2, c-Myc, p21, p27, Bax, Bad and Bcl-2, which all play major roles in neoplastic transformation of many tissues. This novel theoretical analysis based on recently published studies of cyclin signaling, with special emphasis placed on the roles of cyclins D1 and E, suggests novel clinical trials and rational therapies of cancer through reestablishment of cell cycling inhibition in metastatic cancer cells.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.