An Optimal Execution Problem with Market Impact

Auteurs : Takashi Kato

Finance and Stochastics, 18(3), pp.695-732 (2014)
arXiv: 0907.3282v8 - DOI (q-fin.TR)
36 pages, 8 figures, a modified version of the article "An optimal execution problem with market impact" in Finance and Stochastics (2014)

Résumé : We study an optimal execution problem in a continuous-time market model that considers market impact. We formulate the problem as a stochastic control problem and investigate properties of the corresponding value function. We find that right-continuity at the time origin is associated with the strength of market impact for large sales, otherwise the value function is continuous. Moreover, we show the semi-group property (Bellman principle) and characterise the value function as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. We introduce some examples where the forms of the optimal strategies change completely, depending on the amount of the trader's security holdings and where optimal strategies in the Black-Scholes type market with nonlinear market impact are not block liquidation but gradual liquidation, even when the trader is risk-neutral.

Soumis à arXiv le 20 Jul. 2009

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.