Large scale link based latent Dirichlet allocation for web document classification
Auteurs : István Bíró, Jácint Szabó
Résumé : In this paper we demonstrate the applicability of latent Dirichlet allocation (LDA) for classifying large Web document collections. One of our main results is a novel influence model that gives a fully generative model of the document content taking linkage into account. In our setup, topics propagate along links in such a way that linked documents directly influence the words in the linking document. As another main contribution we develop LDA specific boosting of Gibbs samplers resulting in a significant speedup in our experiments. The inferred LDA model can be applied for classification as dimensionality reduction similarly to latent semantic indexing. In addition, the model yields link weights that can be applied in algorithms to process the Web graph; as an example we deploy LDA link weights in stacked graphical learning. By using Weka's BayesNet classifier, in terms of the AUC of classification, we achieve 4% improvement over plain LDA with BayesNet and 18% over tf.idf with SVM. Our Gibbs sampling strategies yield about 5-10 times speedup with less than 1% decrease in accuracy in terms of likelihood and AUC of classification.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.