On the method of typical bounded differences
Auteurs : Lutz Warnke
Résumé : Concentration inequalities are fundamental tools in probabilistic combinatorics and theoretical computer science for proving that random functions are near their means. Of particular importance is the case where f(X) is a function of independent random variables X=(X_1, ..., X_n). Here the well known bounded differences inequality (also called McDiarmid's or Hoeffding-Azuma inequality) establishes sharp concentration if the function f does not depend too much on any of the variables. One attractive feature is that it relies on a very simple Lipschitz condition (L): it suffices to show that |f(X)-f(X')| \leq c_k whenever X,X' differ only in X_k. While this is easy to check, the main disadvantage is that it considers worst-case changes c_k, which often makes the resulting bounds too weak to be useful. In this paper we prove a variant of the bounded differences inequality which can be used to establish concentration of functions f(X) where (i) the typical changes are small although (ii) the worst case changes might be very large. One key aspect of this inequality is that it relies on a simple condition that (a) is easy to check and (b) coincides with heuristic considerations why concentration should hold. Indeed, given an event \Gamma that holds with very high probability, we essentially relax the Lipschitz condition (L) to situations where \Gamma occurs. The point is that the resulting typical changes c_k are often much smaller than the worst case ones. To illustrate its application we consider the reverse H-free process, where H is 2-balanced. We prove that the final number of edges in this process is concentrated, and also determine its likely value up to constant factors. This answers a question of Bollob\'as and Erd\H{o}s.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.