Understanding Image Virality
Auteurs : Arturo Deza, Devi Parikh
Résumé : Virality of online content on social networking websites is an important but esoteric phenomenon often studied in fields like marketing, psychology and data mining. In this paper we study viral images from a computer vision perspective. We introduce three new image datasets from Reddit, and define a virality score using Reddit metadata. We train classifiers with state-of-the-art image features to predict virality of individual images, relative virality in pairs of images, and the dominant topic of a viral image. We also compare machine performance to human performance on these tasks. We find that computers perform poorly with low level features, and high level information is critical for predicting virality. We encode semantic information through relative attributes. We identify the 5 key visual attributes that correlate with virality. We create an attribute-based characterization of images that can predict relative virality with 68.10% accuracy (SVM+Deep Relative Attributes) -- better than humans at 60.12%. Finally, we study how human prediction of image virality varies with different `contexts' in which the images are viewed, such as the influence of neighbouring images, images recently viewed, as well as the image title or caption. This work is a first step in understanding the complex but important phenomenon of image virality. Our datasets and annotations will be made publicly available.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.