Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism
Auteurs : Amit Misra, Joshua Krissansen-Totton, Matthew C. Koehler, Steven Sholes
Résumé : Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely-Large Telescope (E-ELT) for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a S/N of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth-analog orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.