Analysis and Optimization of fastText Linear Text Classifier
Auteurs : Vladimir Zolotov, David Kung
Résumé : The paper [1] shows that simple linear classifier can compete with complex deep learning algorithms in text classification applications. Combining bag of words (BoW) and linear classification techniques, fastText [1] attains same or only slightly lower accuracy than deep learning algorithms [2-9] that are orders of magnitude slower. We proved formally that fastText can be transformed into a simpler equivalent classifier, which unlike fastText does not have any hidden layer. We also proved that the necessary and sufficient dimensionality of the word vector embedding space is exactly the number of document classes. These results help constructing more optimal linear text classifiers with guaranteed maximum classification capabilities. The results are proven exactly by pure formal algebraic methods without attracting any empirical data.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.