Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments
Auteurs : Chris Paxton, Vasumathi Raman, Gregory D. Hager, Marin Kobilarov
Résumé : We consider task and motion planning in complex dynamic environments for problems expressed in terms of a set of Linear Temporal Logic (LTL) constraints, and a reward function. We propose a methodology based on reinforcement learning that employs deep neural networks to learn low-level control policies as well as task-level option policies. A major challenge in this setting, both for neural network approaches and classical planning, is the need to explore future worlds of a complex and interactive environment. To this end, we integrate Monte Carlo Tree Search with hierarchical neural net control policies trained on expressive LTL specifications. This paper investigates the ability of neural networks to learn both LTL constraints and control policies in order to generate task plans in complex environments. We demonstrate our approach in a simulated autonomous driving setting, where a vehicle must drive down a road in traffic, avoid collisions, and navigate an intersection, all while obeying given rules of the road.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.