A Study on Neural Network Language Modeling
Auteurs : Dengliang Shi
Résumé : An exhaustive study on neural network language modeling (NNLM) is performed in this paper. Different architectures of basic neural network language models are described and examined. A number of different improvements over basic neural network language models, including importance sampling, word classes, caching and bidirectional recurrent neural network (BiRNN), are studied separately, and the advantages and disadvantages of every technique are evaluated. Then, the limits of neural network language modeling are explored from the aspects of model architecture and knowledge representation. Part of the statistical information from a word sequence will loss when it is processed word by word in a certain order, and the mechanism of training neural network by updating weight matrixes and vectors imposes severe restrictions on any significant enhancement of NNLM. For knowledge representation, the knowledge represented by neural network language models is the approximate probabilistic distribution of word sequences from a certain training data set rather than the knowledge of a language itself or the information conveyed by word sequences in a natural language. Finally, some directions for improving neural network language modeling further is discussed.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.