Data Assimilation in the Geosciences - An overview on methods, issues and perspectives
Auteurs : Alberto Carrassi, Marc Bocquet, Laurent Bertino, Geir Evensen
Résumé : We commonly refer to state-estimation theory in geosciences as data assimilation. This term encompasses the entire sequence of operations that, starting from the observations of a system, and from additional statistical and dynamical information (such as a dynamical evolution model), provides an estimate of its state. Data assimilation is standard practice in numerical weather prediction, but its application is becoming widespread in many other areas of climate, atmosphere, ocean and environment modeling; in all circumstances where one intends to estimate the state of a large dynamical system based on limited information. While the complexity of data assimilation, and of the methods thereof, stands on its interdisciplinary nature across statistics, dynamical systems and numerical optimization, when applied to geosciences an additional difficulty arises by the continually increasing sophistication of the environmental models. Thus, in spite of data assimilation being nowadays ubiquitous in geosciences, it has so far remained a topic mostly reserved to experts. We aim this overview article at geoscientists with a background in mathematical and physical modeling, who are interested in the rapid development of data assimilation and its growing domains of application in environmental science, but so far have not delved into its conceptual and methodological complexities.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.