Linguistic Features of Genre and Method Variation in Translation: A Computational Perspective
Auteurs : Ekaterina Lapshninova-Koltunski, Marcos Zampieri
Résumé : In this paper we describe the use of text classification methods to investigate genre and method variation in an English - German translation corpus. For this purpose we use linguistically motivated features representing texts using a combination of part-of-speech tags arranged in bigrams, trigrams, and 4-grams. The classification method used in this paper is a Bayesian classifier with Laplace smoothing. We use the output of the classifiers to carry out an extensive feature analysis on the main difference between genres and methods of translation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.