A census of radio-selected AGN on the COSMOS field and of their FIR properties

Auteurs : Manuela Magliocchetti, Paola Popesso, Marcella Brusa, Mara Salvato

arXiv: 1709.07230v1 - DOI (astro-ph.GA)
15 pages, 17 figures, to appear in MNRAS

Résumé : We use the new catalogue by Laigle et al. (2016) to provide a full census of VLA-COSMOS radio sources. We identify 90% of such sources and sub-divide them into AGN and star-forming galaxies on the basis of their radio luminosity. The AGN sample is COMPLETE with respect to radio selection at all z<3.5. Out of 704 AGN, 272 have a counterpart in the Herschel maps. By exploiting the better statistics of the new sample, we confirm the results of Magliocchetti et al. (2014): the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio luminosity and redshift, whereby powerful sources are more likely FIR emitters at earlier epochs. Such an emission is due to star-forming processes within the host galaxy. FIR emitters and non-FIR emitters only differentiate in the z<1 universe. At higher redshifts they are indistinguishable from each other, as there is no difference between FIR-emitting AGN and star-forming galaxies. Lastly, we focus on radio AGN which show AGN emission at other wavelengths. We find that MIR emission is mainly associated with ongoing star-formation and with sources which are smaller, younger and more radio luminous than the average parent population. X-ray emitters instead preferentially appear in more massive and older galaxies. We can therefore envisage an evolutionary track whereby the first phase of a radio-active AGN and of its host galaxy is associated with MIR emission, while at later stages the source becomes only active at radio wavelengths and possibly also in the X-ray.

Soumis à arXiv le 21 Sep. 2017

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.