Neural networks for topology optimization

Auteurs : Ivan Sosnovik, Ivan Oseledets

Résumé : In this research, we propose a deep learning based approach for speeding up the topology optimization methods. The problem we seek to solve is the layout problem. The main novelty of this work is to state the problem as an image segmentation task. We leverage the power of deep learning methods as the efficient pixel-wise image labeling technique to perform the topology optimization. We introduce convolutional encoder-decoder architecture and the overall approach of solving the above-described problem with high performance. The conducted experiments demonstrate the significant acceleration of the optimization process. The proposed approach has excellent generalization properties. We demonstrate the ability of the application of the proposed model to other problems. The successful results, as well as the drawbacks of the current method, are discussed.

Soumis à arXiv le 27 Sep. 2017

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.