Real-Time Road Segmentation Using LiDAR Data Processing on an FPGA
Auteurs : Yecheng Lyu, Lin Bai, Xinming Huang
Résumé : This paper presents the FPGA design of a convolutional neural network (CNN) based road segmentation algorithm for real-time processing of LiDAR data. For autonomous vehicles, it is important to perform road segmentation and obstacle detection such that the drivable region can be identified for path planning. Traditional road segmentation algorithms are mainly based on image data from cameras, which is subjected to the light condition as well as the quality of road markings. LiDAR sensor can obtain the 3D geometry information of the vehicle surroundings with very high accuracy. However, it is a computational challenge to process a large amount of LiDAR data at real-time. In this work, a convolutional neural network model is proposed and trained to perform semantic segmentation using the LiDAR sensor data. Furthermore, an efficient hardware design is implemented on the FPGA that can process each LiDAR scan in 16.9ms, which is much faster than the previous works. Evaluated using KITTI road benchmarks, the proposed solution achieves high accuracy of road segmentation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.