Light-Head R-CNN: In Defense of Two-Stage Object Detector
Auteurs : Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng, Jian Sun
Résumé : In this paper, we first investigate why typical two-stage methods are not as fast as single-stage, fast detectors like YOLO and SSD. We find that Faster R-CNN and R-FCN perform an intensive computation after or before RoI warping. Faster R-CNN involves two fully connected layers for RoI recognition, while R-FCN produces a large score maps. Thus, the speed of these networks is slow due to the heavy-head design in the architecture. Even if we significantly reduce the base model, the computation cost cannot be largely decreased accordingly. We propose a new two-stage detector, Light-Head R-CNN, to address the shortcoming in current two-stage approaches. In our design, we make the head of network as light as possible, by using a thin feature map and a cheap R-CNN subnet (pooling and single fully-connected layer). Our ResNet-101 based light-head R-CNN outperforms state-of-art object detectors on COCO while keeping time efficiency. More importantly, simply replacing the backbone with a tiny network (e.g, Xception), our Light-Head R-CNN gets 30.7 mmAP at 102 FPS on COCO, significantly outperforming the single-stage, fast detectors like YOLO and SSD on both speed and accuracy. Code will be made publicly available.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.