Forward asteroseismic modeling of stars with a convective core from gravity-mode oscillations: parameter estimation and stellar model selection
Auteurs : C. Aerts, G. Molenberghs, M. Michielsen, M. G. Pedersen, R. Björklund, C. Johnston, J. S. G. Mombarg, D. M. Bowman, B. Buysschaert, P. I. Pápics, S. Sekaran, J. O. Sundqvist, A. Tkachenko, K. Truyaert, T. Van Reeth, E. Vermeyen
Résumé : We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of low-degree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations amongst the free parameters included in stellar models. Aside from the stellar mass, metalicity and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often used $\chi^2$ statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.