Deep Learning for Image Sequence Classification of Astronomical Events
Auteurs : Rodrigo Carrasco-Davis, Guillermo Cabrera-Vives, Francisco Förster, Pablo A. Estévez, Pablo Huijse, Pavlos Protopapas, Ignacio Reyes, Jorge Martínez, Cristóbal Donoso
Résumé : We propose a new sequential classification model for astronomical objects based on a recurrent convolutional neural network (RCNN) which uses sequences of images as inputs. This approach avoids the computation of light curves or difference images. To the best of our knowledge, this is the first time that sequences of images are used directly for the classification of variable objects in astronomy. In addition, we solve partially the problem of transfer learning from synthetic to real-world images. This is done by transforming synthetic light-curves to images in a realistic way, by taking into account observational conditions and instrumental parameters. This approach allows us to generate datasets to train and test our RCNN model for different astronomical surveys and telescopes. Moreover, using a simulated dataset is faster and more adaptable to different surveys and classification tasks compared to collecting real labeled image sequences. To test the RCNN classifier trained with a synthetic dataset, we used real-world data from the High cadence Transient Survey (HiTS) obtaining an average recall of $87%$ on four classes: supernovae, RR Lyrae, non-variables, and asteroids. We compare the results of our model with those of a light curve classifier, in both simulated and real data. Our RCNN model outperforms the light curve classifier due to the extra information contained on the images. The results obtained encourage us to use and continue developing the proposed method for astronomical alert brokers systems that will process alert streams generated by new telescopes such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.