Identifying Land Patterns from Satellite Imagery in Amazon Rainforest using Deep Learning
Auteurs : Somnath Rakshit, Soumyadeep Debnath, Dhiman Mondal
Résumé : The Amazon rainforests have been suffering widespread damage, both via natural and artificial means. Every minute, it is estimated that the world loses forest cover the size of 48 football fields. Deforestation in the Amazon rainforest has led to drastically reduced biodiversity, loss of habitat, climate change, and other biological losses. In this respect, it has become essential to track how the nature of these forests change over time. Image classification using deep learning can help speed up this process by removing the manual task of classifying each image. Here, it is shown how convolutional neural networks can be used to track changes in land patterns in the Amazon rainforests. In this work, a testing accuracy of 96.71% was obtained. This can help governments and other agencies to track changes in land patterns more effectively and accurately.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.