Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks
Auteurs : Jun Beom Kho
Résumé : Generally, facial age variations affect gender classification accuracy significantly, because facial shape and skin texture change as they grow old. This requires re-examination on the gender classification system to consider facial age information. In this paper, we propose Multi-expert Gender Classification on Age Group (MGA), an end-to-end multi-task learning schemes of age estimation and gender classification. First, two types of deep neural networks are utilized; Convolutional Appearance Network (CAN) for facial appearance feature and Deep Geometry Network (DGN) for facial geometric feature. Then, CAN and DGN are integrated by the proposed model integration strategy and fine-tuned in order to improve age and gender classification accuracy. The facial images are categorized into one of three age groups (young, adult and elder group) based on their estimated age, and the system makes a gender prediction according to average fusion strategy of three gender classification experts, which are trained to fit gender characteristics of each age group. Rigorous experimental results conducted on the challenging databases suggest that the proposed MGA outperforms several state-of-art researches with smaller computational cost.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.