Inspecting Interactions: Online News Media Synergies in Social Media

Auteurs : Praboda Rajapaksha, Reza Farahbakhsh, Noel Crespi, Bruno Defude

This paper is accepted by ASSONAM 2018 conference (http://asonam.cpsc.ucalgary.ca/2018/AcceptedPapers.php)

Résumé : The rising popularity of social media has radically changed the way news content is propagated, including interactive attempts with new dimensions. To date, traditional news media such as newspapers, television and radio have already adapted their activities to the online news media by utilizing social media, blogs, websites etc. This paper provides some insight into the social media presence of worldwide popular news media outlets. Despite the fact that these large news media propagate content via social media environments to a large extent and very little is known about the news item producers, providers and consumers in the news media community in social media.To better understand these interactions, this work aims to analyze news items in two large social media, Twitter and Facebook. Towards that end, we collected all published posts on Twitter and Facebook from 48 news media to perform descriptive and predictive analyses using the dataset of 152K tweets and 80K Facebook posts. We explored a set of news media that originate content by themselves in social media, those who distribute their news items to other news media and those who consume news content from other news media and/or share replicas. We propose a predictive model to increase news media popularity among readers based on the number of posts, number of followers and number of interactions performed within the news media community. The results manifested that, news media should disperse their own content and they should publish first in social media in order to become a popular news media and receive more attractions to their news items from news readers.

Soumis à arXiv le 16 Sep. 2018

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.