Active Learning for Deep Object Detection

Auteurs : Clemens-Alexander Brust, Christoph Käding, Joachim Denzler

Résumé : The great success that deep models have achieved in the past is mainly owed to large amounts of labeled training data. However, the acquisition of labeled data for new tasks aside from existing benchmarks is both challenging and costly. Active learning can make the process of labeling new data more efficient by selecting unlabeled samples which, when labeled, are expected to improve the model the most. In this paper, we combine a novel method of active learning for object detection with an incremental learning scheme to enable continuous exploration of new unlabeled datasets. We propose a set of uncertainty-based active learning metrics suitable for most object detectors. Furthermore, we present an approach to leverage class imbalances during sample selection. All methods are evaluated systematically in a continuous exploration context on the PASCAL VOC 2012 dataset.

Soumis à arXiv le 26 Sep. 2018

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.