On the practice of classification learning for clinical diagnosis and therapy advice in oncology
Auteurs : Flavio S Correa da Silva, Frederico P Costa, Antonio F Iemma
Résumé : Artificial intelligence and medicine have a longstanding and proficuous relationship. In the present work we develop a brief assessment of this relationship with specific focus on machine learning, in which we highlight some critical points which may hinder the use of machine learning techniques for clinical diagnosis and therapy advice in practice. We then suggest a conceptual framework to build successful systems to aid clinical diagnosis and therapy advice, grounded on a novel concept we have coined drifting domains. We focus on oncology to build our arguments, as this area of medicine furnishes strong evidence for the critical points we take into account here.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.