Resource Abstraction for Reinforcement Learning in Multiagent Congestion Problems
Auteurs : Kleanthis Malialis, Sam Devlin, Daniel Kudenko
Résumé : Real-world congestion problems (e.g. traffic congestion) are typically very complex and large-scale. Multiagent reinforcement learning (MARL) is a promising candidate for dealing with this emerging complexity by providing an autonomous and distributed solution to these problems. However, there are three limiting factors that affect the deployability of MARL approaches to congestion problems. These are learning time, scalability and decentralised coordination i.e. no communication between the learning agents. In this paper we introduce Resource Abstraction, an approach that addresses these challenges by allocating the available resources into abstract groups. This abstraction creates new reward functions that provide a more informative signal to the learning agents and aid the coordination amongst them. Experimental work is conducted on two benchmark domains from the literature, an abstract congestion problem and a realistic traffic congestion problem. The current state-of-the-art for solving multiagent congestion problems is a form of reward shaping called difference rewards. We show that the system using Resource Abstraction significantly improves the learning speed and scalability, and achieves the highest possible or near-highest joint performance/social welfare for both congestion problems in large-scale scenarios involving up to 1000 reinforcement learning agents.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.