Market Making under a Weakly Consistent Limit Order Book Model
Auteurs : Baron Law, Frederi Viens
Résumé : We develop a new market-making model, from the ground up, which is tailored towards high-frequency trading under a limit order book (LOB), based on the well-known classification of order types in market microstructure. Our flexible framework allows arbitrary order volume, price jump, and bid-ask spread distributions as well as the use of market orders. It also honors the consistency of price movements upon arrivals of different order types. For example, it is apparent that prices should never go down on buy market orders. In addition, it respects the price-time priority of LOB. In contrast to the approach of regular control on diffusion as in the classical Avellaneda and Stoikov [1] market-making framework, we exploit the techniques of optimal switching and impulse control on marked point processes, which have proven to be very effective in modeling the order-book features. The Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) associated with the control problem can be solved numerically via finite-difference method. We illustrate our optimal trading strategy with a full numerical analysis, calibrated to the order-book statistics of a popular Exchanged-Traded Fund (ETF). Our simulation shows that the profit of market-making can be severely overstated under LOBs with inconsistent price movements.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.